Plagiarism to Artificial Intelligence in high school students: a real problem
DOI:
https://doi.org/10.35622/j.rie.2023.02.007Keywords:
academic plagiarism, academic dishonesty, academic fraud, artificial inteligenceAbstract
The development of artificial intelligence applications is raising alarms in the educational and professional community. Its potential to paraphrase or write texts make it very tempting to commit dishonest actions. Being a relatively current topic, there are no works that investigate the frequency and uses that students give to these tools in the educational field. The objective of this work was to explore the frequency and perceptions of use of this type of software in high school students of an educational institution. The research was non-experimental and of an exploratory-descriptive nature. The sample consisted of 83 high school students. The survey was used as techniques and the questionnaire as instruments. The results show that more than 62.9% of the students have used these tools to paraphrase and 4.8% to write complete essays, during the course. Most of them positively perceive their use, depending on different factors, but especially their lack of knowledge of what plagiarism is, as well as their poor academic writing skills. More in-depth studies are required to investigate the real frequency of this problem and how to prevent or detect it.
References
Alaminos, Antonio., & Castejón, J. L. (2006). Elaboración, análisis e interpretación de encuestas, cuestionarios y escalas de opinión. Editorial Marfil S.A. https://core.ac.uk/download/pdf/16372347.pdf
Alesina, L., Bertoni, M., Mascheroni, P., Moreira, N., Picasso, F., Ramírez, J., & Rojo, V. (2011). Metodología de la investigación para las ciencias sociales apuntes para un curso inicial (K. Batthyány & M. Cabrera, Eds.). Universidad de La Replública. https://cutt.ly/o4fPCeS
Arif, T. bin, Munaf, U., & Ul-Haque, I. (2023). The future of medical education and research: Is ChatGPT a blessing or blight in disguise? Medical Education Online, 28(1). https://doi.org/10.1080/10872981.2023.2181052 DOI: https://doi.org/10.1080/10872981.2023.2181052
Comas, R., Sureda, J., Casero, A., & Morey, M. (2011). La integridad académica entre el alumnado universitario español*. Estudios Pedagógicos, 37(1), 207–225. https://www.scielo.cl/pdf/estped/v37n1/art11.pdf DOI: https://doi.org/10.4067/S0718-07052011000100011
Cotton, D. R. E., Cotton, P. A., & Shipway, J. R. (2023). Chatting and Cheating: Ensuring academic integrity in the era of ChatGPT. EdArXiv, 1–11. https://doi.org/10.35542/osf.io/mrz8h DOI: https://doi.org/10.35542/osf.io/mrz8h
Díaz-Arce, D. (2016). Plagio académico en estudiantes de bachillerato: ¿qué detecta Turnitin? RUIDERAe: Revista de Unidades de Información., 9, 1–31. https://revista.uclm.es/index.php/ruiderae/article/view/1146
Diaz-Arce, D. (2023). Inteligencia artificial vs.Turnitin: implicaciones para el plagio académico. Revista Cognosis, 8(1), 15–25. https://revistas.utm.edu.ec/index.php/Cognosis/article/view/5517/6269 DOI: https://doi.org/10.33936/cognosis.v8i1.5517
Díaz-Arce, D., Brito-González, J. L., Nieto-Trelles, V. A., & Muñoz-Arévalo, W. D. (2019). Efectos de la capacitación y la retroalimentación sobre el plagio académico en estudiantes de Bachillerato. REVISTA CONCIENCIA EPG, 4(2), 24–41. https://doi.org/10.32654/concienciaepg.4-2.3 DOI: https://doi.org/10.32654/CONCIENCIAEPG.4-2.3
Diaz-Arce, D., Brito-González, J., Nieto-Trelles, V., & Muñoz, W. (2019). Efectos de la retroalimentación sobre la disminución del plagio académico en estudiantes de bachillerato. Revista Innova Educación, 1(4), 468–489. https://doi.org/10.35622/j.rie.2019.04.005 DOI: https://doi.org/10.35622/j.rie.2019.04.005
Escalante Jiménez, J. L., & Martínez, S. (2022). Causas del plagio académico en estudiantes universitarios de educación: percepción docente de una universidad dominicana. Revista Educare, 26(3), 47–62. https://doi.org/https://doi.org/10.46498/reduipb.v26i3.1814 DOI: https://doi.org/10.46498/reduipb.v26i3.1814
Espinoza Freire, E. E. (2020). El plagio un flagelo en el ámbito académico ecuatoriano. Universidad y Sociedad, 12(3), 407–415. http://scielo.sld.cu/pdf/rus/v12n3/2218-3620-rus-12-03-407.pdf
Estupiñán Ricardo, J., Leyva Vázquez, M. Y., Peñafiel Palacios, A. J., & Assafiri Ojeda, Y. el. (2021). Inteligencia artificial y propiedad intelectual. Revista Universidad y Sociedad, 13(S3), 362–368. https://rus.ucf.edu.cu/index.php/rus/article/view/2490/2445
Guo, B., Zhang, X., Wang, Z., Jiang, M., Nie, J., Ding, Y., Yue, J., & Wu, Y. (2023). How Close is ChatGPT to Human Experts? Comparison Corpus, Evaluation, and Detection. ArXiv, 1–20. http://arxiv.org/abs/2301.07597
Incio Flores, F. A., Capuñay Sanchez, D. L., Estela Urbina, R. O., Valles Coral, M. Á., Vergara Medrano, E. E., & Elera Gonzales, D. G. (2021). Inteligencia artificial en educación: una revisión de la literatura en revistas científicas internacionales. Apuntes Universitarios, 12(1), 135–152. https://doi.org/10.17162/au.v12i1.974 DOI: https://doi.org/10.17162/au.v12i1.974
Khalil, M., & Er, E. (2023). Will ChatGPT get you caught? Rethinking of Plagiarism Detection. ArXiv, 1–13. https://arxiv.org/ftp/arxiv/papers/2302/2302.04335.pdf DOI: https://doi.org/10.35542/osf.io/fnh48
Llovera-López, Y., Aragón-Carretero, Y., & Cano-Olivares, P. (2023). Ciberplagio Académico entre el estudiantado universitario: un acercamiento al estado actual de la temática (2017-2020). Revista Colombiana de Educación, 87, 207–226. https://doi.org/10.17227/rce.num87-13143 DOI: https://doi.org/10.17227/rce.num87-13143
Macdonald, C., Adeloye, D., Sheikh, A., & Rudan, I. (2023). Can ChatGPT draft a research article? An example of population-level vaccine effectiveness analysis. Journal of Global Health, 13, 01003. https://doi.org/10.7189/jogh.13.01003 DOI: https://doi.org/10.7189/jogh.13.01003
Medina Díaz, M., & Verdejo Carrión, A. L. (2022). Frecuencia de comportamientos asociados con el plagio en una universidad pública en Puerto Rico. Innovaciones Educativas, 24(Especial), 21–40. https://doi.org/10.22458/ie.v24iespecial.4237 DOI: https://doi.org/10.22458/ie.v24iEspecial.4237
Perkins, M. (2023). Academic integrity considerations of AI Large Language Models in the post-pandemic era: ChatGPT and beyond. Journal of University Teaching and Learning Practice, 20(2). https://doi.org/10.53761/1.20.02.07 DOI: https://doi.org/10.53761/1.20.02.07
Reskala-Sánchez, F. J. (2020). Nuevos comportamientos de deshonestidad académica en estudiantes mexicanos: Un estudio exploratorio. Informes Psicológicos, 20(2), 155–170. https://doi.org/10.18566/infpsic DOI: https://doi.org/10.18566/infpsic.v20n2a11
Rudolph, J., Tan, S., & Tan, S. (2023). ChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Journal of Applied Learning & Teaching, 6(1), 1–22. https://doi.org/10.37074/jalt.2023.6.1.9 DOI: https://doi.org/10.37074/jalt.2023.6.1.9
Saiz García, C. (2019). Las obras creadas por sistemas de inteligencia artificial y su protección por el derecho de autor. InDret, 1, 1–45. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3365458
Susnjak, T. (2022). ChatGPT: The End of Online Exam Integrity? ArXiv, 1–21. http://arxiv.org/abs/2212.09292
Published
Issue
Section
License
Copyright (c) 2023 Dariel Díaz-Arce
This work is licensed under a Creative Commons Attribution 4.0 International License.